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a b s t r a c t

Muscle Specific Kinase (MuSK) is a transmembrane tyrosine kinase vital for forming and maintaining
the mammalian neuromuscular junction (NMJ: the synapse between motor nerve and skeletal muscle).
MuSK expression switches on during skeletal muscle differentiation. MuSK then becomes restricted to
the postsynaptic membrane of the NMJ, where it functions to cluster acetylcholine receptors (AChRs). The
eywords:
uSK

RP4
ynapse formation
yrosine kinases
grin

expression, activation and turnover of MuSK are each regulated by signals from the motor nerve terminal.
MuSK forms the core of an emerging signalling complex that can be acutely activated by neural agrin (N-
agrin), a heparin sulfate proteoglycan secreted from the nerve terminal. MuSK activation initiates complex
intracellular signalling events that coordinate the local synthesis and assembly of synaptic proteins. The
importance of MuSK as a synapse organiser is highlighted by cases of autoimmune myasthenia gravis in
which MuSK autoantibodies can deplete MuSK from the postsynaptic membrane, leading to complete
disassembly of the adult NMJ.

© 2010 Elsevier Ltd. All rights reserved.
. Introduction

Muscle Specific Kinase (MuSK) is a 100 kDa transmembrane
yrosine kinase originally purified from the (synapse-rich) elec-
ric organ of the ray, Torpedo californica (Jennings et al., 1993). At
he vertebrate neuromuscular junction (NMJ), terminals of motor
xons release vesicle loads of acetylcholine onto postsynaptic
cetylcholine receptors (AChR; Fig. 1A) and thereby initiate mus-
le contraction. Thus, effective neurotransmission depends upon
ight packing of postsynaptic AChRs into AChR clusters. MuSK is
ssential for the stability of these AChR clusters and is concen-
rated within them (DeChiara et al., 1996; Kummer et al., 2006;

u et al., 2010). N-agrin, a heparan-sulfate proteoglycan secreted

rom the motor nerve terminal, can initiate MuSK autophosphory-
ation, thereby activating MuSK (Mittaud et al., 2004). In turn, this
rives diverse downstream signalling systems that reorganise the
ctin cytoskeleton and recruit AChR-binding scaffolding proteins
uch as rapsyn to cluster AChRs.
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2. Structure of MuSK and the MuSK complex

The gene Musk is found on mouse chromosome 4 (the human
orthologue is on chromosome 9). Fourteen exons give rise to sev-
eral transcripts, most of which encode the full suite of polypeptide
modules represented in Fig. 1B. The extracellular region consists of
four immunoglobulin-like (Ig) domains and a cysteine-rich domain
(C6). The cytoplasmic, juxtamembrane domain (JM), adjacent the
transmembrane domain (TM), is followed by a (tyrosine kinase)
catalytic domain.

MuSK forms the core of a multi-protein signalling complex
(Fig. 1C). N-agrin does not interact directly with MuSK but rather
binds low-density lipoprotein receptor-related protein 4 (LRP4;
Kim et al., 2008; Zhang et al., 2008). LRP4 and MuSK interact
via their respective extracellular domains. Another key player in
MuSK activation is the adaptor protein downstream-of-tyrosine-
kinase-7 (Dok7). Dok7 binds to a tyrosine-phosphorylated motif in
the JM domain of MuSK (NPXY553, Fig. 1B; Bergamin et al., 2010;
Okada et al., 2006). The tumourous imaginal discs protein (Tid1)
binds constitutively to the cytoplasmic portion of MuSK (Linnoila
et al., 2008). Dishevelled (Dvl) binds the JM and kinase domains

of MuSK, coupling MuSK to p21-activated kinase (PAK1; Fig. 1C;
Luo et al., 2002). All of these components of the MuSK signalling
complex are required to mediate AChR clustering in response to
N-agrin.
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ig. 1. Structure of the MuSK signalling complex and its synaptic context. (A) At
muscle) membrane by a 50 nm synaptic cleft. Schwann (glial) cells loosely enwrap
f acetylcholine. (B) Domain structure of the ∼100 kDa MuSK polypeptide (N-term
bbreviations.

. Expression, activation and turnover of MuSK

The MuSK gene promoter contains an E-box (CAGCTG) that is
he target for the transcription factor, myogenin. This mediates the
trong developmental up-regulation of MuSK as pre-muscle cells
ifferentiate, and the subsequent down-regulation when each fiber
ecomes innervated (Tang et al., 2006). Each muscle fiber con-
ains a string of nuclei, most of them distant from the NMJ. As
he developing NMJ begins to evoke calcium fluxes in the muscle,

uSK expression becomes restricted to the postsynaptic mem-
rane portion of each muscle fiber. A small group of nuclei located
eneath the postsynaptic membrane continue to transcribe high

evels of mRNAs for synaptic genes such as MuSK and AChR (�-
nd �-subunits). In addition to E-boxes, the promoters of these
enes contain N-box elements (GTACCGGAAATA). MuSK signalling
s thought to act locally via transcriptional activators of the ETS-
amily (Lacazette et al., 2003). These bind the N-box and so may
rive ongoing transcription of MuSK and AChR in sub-synaptic
uclei.

N-agrin is the best-understood activator of MuSK (Fig. 2A). Bind-
ng of N-agrin to LRP4 enhances the LRP4–MuSK interaction and
ctivates MuSK (Kim et al., 2008; Zhang et al., 2008). The first step
n MuSK activation appears to be the autophosphorylation of Y553
n the NPXY553 motif of JM (Fig. 1B; Till et al., 2002). This recruits
ok7 (via its phosphotyrosine binding domain) creating a tetramer

n which a Dok7 dimer cross-links two MuSK monomers (Fig. 1C;
ergamin et al., 2010). Crystal structure of the intracellular portion
f MuSK indicates that the catalytic domain is tightly auto-inhibited
y an activation loop that blocks access to both the ATP- and
ubstrate-binding sites (Till et al., 2002). Studies with the isolated
ntracellular portion of MuSK suggest that the autophosphorylation
f Y553 precedes that of three other tyrosine residues (750, 754, and
55) located in the activation loop of the kinase domain (Till et al.,
002). Phosphorylation of the latter three tyrosines is thought to

elease autoinhibition, switching MuSK to a stable active state.

Several factors affect MuSK function. The MuSK complex has
n intrinsic capacity to organise AChR clusters (Lin et al., 2001).
n the absence of N-agrin, higher membrane densities of MuSK
expression level) increased AChR clustering, presumably via sto-
MJ the nerve terminal sits in a synaptic gutter, separated from the postsynaptic
rve terminal. AChRs are tightly packed into clusters beneath the sites of exocytosis
extracellular). (C) The assembled (dimeric) MuSK signalling complex. See text for

ichastic MuSK dimerization/activation events (Kim and Burden,
2008). Likewise the tendency of LRP4 to self-associate might con-
tribute to basal activity of LRP4–MuSK complexes (Kim et al., 2008).
In drosophila, Wnt-family glycoproteins are secreted by the motor
nerve and act via postsynaptic receptors (Frizzled and Derailed)
to regulate NMJ formation (Wu et al., 2010). Mouse spinal cord
and muscles express Wnt11. In zebrafish the homologous Wnt was
reported to bind directly to the C6 domain of MuSK. Thus, while
details remain uncertain, Wnts secreted by mammalian nerve
and/or muscle might represent an additional modulator of MuSK
signalling. Casein kinase 2 (CK2) phosphorylates serine residues
in the kinase insert of MuSK, thereby enhancing AChR clustering
(Cheusova et al., 2006). As with the actions of Wnt ligands, the pre-
cise mechanism by which serine phosphorylation by CK2 influences
MuSK signalling remains to be determined.

MuSK activation and turnover both involve a regulated inter-
nalisation process (Fig. 2C). Rodent and human MuSK share a
carboxyl-terminus (-VXV) that facilitates binding of the E3 ubiq-
uitin ligase, PDZRN3. When muscle cells are exposed to N-agrin,
MuSK becomes a substrate for PDZRN3 (Lu et al., 2007). Over-
expression of PDZRN3 in heterologous cells reduced the surface
expression of co-transfected MuSK, while down-regulation of
endogenous PDZRN3 in muscle cells increased surface levels
of MuSK. Hence, N-agrin-induced ubiquitination leads to inter-
nalisation of MuSK (Fig. 2C pathway 11). Others demonstrated
that N-ethylmalemide Sensitive Factor (NSF) was needed for
the N-agrin-induced activation and internalisation of MuSK (Zhu
et al., 2008). MuSK activation and internalisation appear to be
coupled (Fig. 2C pathway 13). N-agrin also triggers binding of
MuSK to caveolin-3 (Hezel et al., 2010). It is not certain yet
whether caveolae serve as the vehicle for internalisation of acti-
vated MuSK. Nor do we know whether internalised MuSK is
subsequently recycled to the plasma membrane or targeted for
degradation.
4. Biological function of MuSK

MuSK plays a central coordinating role in the formation of
the NMJ during embryonic development. Mouse embryos lacking
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Fig. 2. Activation of the MuSK complex drives AChR clustering. (A–C) Aspects of MuSK signalling initiated by the ligand, N-agrin. Numbered arrows represent signalling
interactions between components of the postsynaptic MuSK protein complex and downstream effectors of AChR clustering. (A) (1) Binding of N-agrin to LRP4–MuSK leads
to autophosphorylation of Y553, thereby recruiting a dimer of Dok7. (2) Formation of a stable MuSK-Dok7 (2 + 2) tetramer probably favours further autophosphorylation of
tyrosines within the activation loop, disinhibiting the catalytic domain. (3) This, in turn, activates non-receptor tyrosine kinases such as Abl and Src. (4) These kinases can
serve as positive feedback for MuSK activation. (5) Abl and Src are important for stabilising nascent AChR clusters. Stabilisation involves tyrosine phosphorylation of the
AChR �-subunit. This recruits rapsyn linking AChR to the cytoskeleton. (6) Casein kinase 2 (CK2) phosphorylates serine residues on MuSK, favouring AChR cluster stability.
(B) Reorganisation of the cortical cytoskeleton is critical for formation of AChR clusters. (7) MuSK activates geranylgeranyltransferase I (GGT) which, in turn is needed to
activate the small GTPase, Rho. (8) Successive activation of Rac then Rho leads to the assembly of AChR microaggregates and large clusters respectively. (9) Activated Rac acts
via PAK I kinase to facilitate actin cytoskeleton-reorganisation and AChR clustering. (10) Tid1 may act via small GTPases (such as Rac) and/or via heat shock proteins (such as
H (11) A
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sp70) to drive AChR clustering. (C) Internalisation is coupled to MuSK activation.
uSK is recruited to caveolae by binding to caveolin3. (13) NSF-dependent interna

bbreviations and citations.

uSK fail to form stable NMJs. The paralysed embryos die just
efore birth (DeChiara et al., 1996). MuSK is essential for target-

ng AChRs, acetylcholinesterase and a variety of other postsynaptic
roteins to the developing synapse (Kummer et al., 2006). During
mbryonic development, AChR clusters form on immature muscle
bers prior to, and independent of, the motor nerves (Harris, 1981;
in et al., 2001). These ‘prepatterned’ AChR clusters are restricted to
he central part of the fiber where MuSK is most highly expressed
nd where nerves will shortly innervate.

N-agrin-MuSK signalling appears necessary to stabilise these
mbryonic synapses. When an actin promoter was used to arti-
cially drive high levels of MuSK expression throughout the
mbryonic muscle fiber, additional AChR clusters appeared in more
istal parts of the fibre (Kim and Burden, 2008). Some of these
ChR clusters became innervated, suggesting that a local high den-
ity (and/or activity) of MuSK is sufficient to prefigure the site of
ynapse formation on the target muscle fiber. Studies in zebrafish
mbryos suggest MuSK may also play a role in guiding growing
otor axons (Wu et al., 2010).
The signalling pathways through which MuSK acts to build

n AChR-rich postsynaptic membrane remain to be fully defined
Fig. 2). However, assembly of AChRs into AChR clusters requires
he small GTPases Rac and Rho (Weston et al., 2003). When N-agrin
s added to muscle cells, MuSK activation and tyrosine phospho-
ylation of geranylgeranyltransferase I leads to activation of Rac
and formation of tiny AChR micro-aggregates (Fig. 2B pathways
–8; Luo et al., 2003). Rac activation is followed by the activation

f Rho, which is thought to act via PAK I to consolidate constel-
ations of AChR micro-aggregates into large (>10 �m diameter)
ChR clusters (Fig. 2B pathway 9; Luo et al., 2002). The cytoplas-
ic tyrosine kinases Abl and Src are also activated by MuSK. They

lay overlapping roles in sustaining MuSK activation and fostering
ctivation leads to ubiquitination of MuSK by the E3 ligase PDZRN3. (12) Activated
on of MuSK is coupled to full activation of MuSK and AChR clustering. See text for

tyrosine phosphorylation of the AChR �-subunit (Fig. 2A pathways
3–5; Mittaud et al., 2004). Tyrosine phosphorylation of the AChR
�-subunit (Y390), recruits the adaptor protein, rapsyn, thereby sta-
bilising the AChR cluster (Borges et al., 2008).

Positive feedback cycles characterise MuSK-mediated mem-
brane domain construction. For example, Abl kinase acts back to
bolster MuSK phosphorylation (Fig. 2A pathways 3–4). Through
such local, positive feedback pathways small MuSK–AChR clus-
ters tend to grow into bigger membrane domains, recruiting more
MuSK, rapsyn and AChR. Other systems act to counter the growth of
AChR clusters. MuSK activation initiates a negative-feedback path-
way involving the tyrosine phosphatase, Shp2 (Qian et al., 2008).
Furthermore, acetylcholine released by the nascent nerve termi-
nal acts via postsynaptic calpain and cyclin-dependent kinase 5
(CDK5) to drive disassembly of AChR clusters (Kummer et al., 2006).
The N-agrin-MuSK-rapsyn system acts locally to inhibit this disas-
sembly pathway, by sequestering calpain (Chen et al., 2007). Thus,
the growth, homeostasis and remodelling of the immature AChR
cluster appears to depend upon the balance of local positive and
negative signalling pathways.

MuSK is also expressed in mammalian brain and sperm. To test
the significance of MuSK in central neurons, antisense oligonu-
cleotide was injected into the hippocampal regions of the rat
brain (Garcia-Osta et al., 2006). Suppression of MuSK expression
in the hippocampi led to abnormalities in memory consolida-
tion: the process through which new memories become stable.
The mid-piece region of sperm also expresses a truncated form of

MuSK, adjacent to N-agrin, rapsyn and (neuronal type) �7-AChR
immunostaining (Kumar et al., 2006). It is tempting to predict
that MuSK will be found to help organise specialised membrane
domains at excitatory central synapses and in the mid-piece of
sperm.
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. Congenital and autoimmune diseases act on the MuSK
ystem

The NMJ is severely impaired, leading to muscle weakness, in
are congenital myasthenic syndromes (CMS). Some CMS cases
re caused by mutations in either rapsyn, Dok7 or MuSK. Patients
ith mutant MuSK displayed anticipated deficiencies in postsynap-

ic AChR clustering and presynaptic nerve terminal differentiation
Chevessier et al., 2004). Slightly less rare (∼1:100,000), are cases
f autoimmune myasthenia gravis caused by antibodies against
uSK. When anti-MuSK-positive patient IgG was injected into
ice it depleted MuSK from the postsynaptic membrane (Cole

t al., 2010). This led to disassembly of postsynaptic AChR clusters,
etraction of the nerve terminal and fatiguing muscle weakness.
uscle weakness resulting from loss of NMJs is a common feature

f amyotrophic lateral sclerosis (a motor neuron disease), and nor-
al old-age (sarcopenia). Better understanding of the molecular

hysiology of the MuSK system may aid the development of new
trategies to reduce NMJ loss and muscle weakness.
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